

工业级DC-DC转换器

9-36 V	40V	1.2-15V	50W	2250Vdc	1/16 砖
连续输入	瞬态输入	输出	最大功率	隔离	DC-DC 转换器

IQ 1/16 砖转换器系列是全新一代在板安装、固定开关频率的DC-DC转换器,应用同步整流技术获得了极高的功率转换效率。模块全部为密封封装,可在多种工业和交通应用的恶劣条件下提供保护。

工作特性

- 高效率, 额定负载电流效率82%
- 以最小的降额输出全功率
- 工作输入电压范围: 9-36V
- 固定开关频率提供可预测的 EMI
- 无最小负载要求

机械特性

- 工业标准封装半砖引脚输出
- 尺寸: 1.436" x 1.036" x 0.500" (36.47 x 26.31 x 12.70 mm)
- 总重量: 1.1 oz (31 g)
- 法兰盘基板可选

控制特性

- 开关控制,参考输入端
- 输出电压远端补偿
- 宽输出电压调节范围: -50%, +10%

安全特性

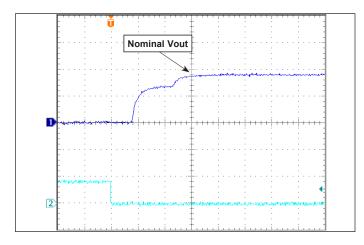
- UL 60950-1, 基本绝缘
- CAN/CSA-C22.2 No. 60950-1
- EN60950-1
- RoHS compliant (见最后一页)

保护特性

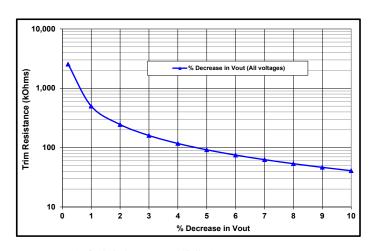
- 输入欠压锁定
- 输出限流和短路保护
- 反倒灌保护
- 自动恢复输出过压保护
- 过热关断

目录

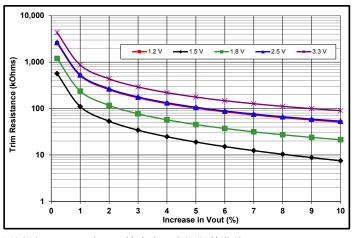
页码
产品系列电气特征2
1.2V 输出电气特征及图表 4
1.5V 输出电气特征及图表 6
1.8V 输出电气特征及图表 8
2.5V 输出电气特征及图表10
3.3V 输出电气特征及图表12
5V 输出电气特征及图表14
7V 输出电气特征及图表16
12V 输出电气特征及图表
15V 输出电气特征及图表
应用部分
标准封装机械图
法兰盘封装机械图
标准认证测试, 订购信息

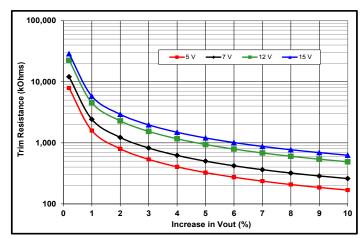

Y-IQ18 SG产品系列电气特征(全部输出电压) 除非另有说明,否则Ta=25°C,气流速率=300 LFM,Vin=18Vdc;全工作温度范围为-40°C至+100°C基板温度,并具有适当的功率降额。部分参数的更改不再另作通知。

个再另作通知。 会 **5	1		1	1	
参数	Min.	Тур.	Max.	Units	备注及条件
最大工作极限参数		,			
输入电压					
非工作时	-1		50	V	连续
工作时			36	V	连续
工作时瞬态保护			40	V	1 s
隔离电压					加强绝缘, IEC 60950-1
输入到输出			2250	Vrms	60 s per EN 50155
输入到基板			2250	Vrms	60 s per EN 50155
输出到基板			2250	Vrms	60 s per EN 50155
工作温度	-40		100	°C	基板温度
存储温度	-45		125	°C	
电压 @ ON/OFF 输入引脚	-2		18	V	
输入特征					
工作输入电压范围	9	18	36	V	
输入欠压锁定					
启动电压阈值	9.3	9.7	10.3	V	
关断电压阈值	7.9	8.4	8.9	V	
关断电压滞后	7.5	1.3	0.5	V	
输入过压锁定		-		V	不适用
推荐的外部输入电容		100		μF	Typical ESR 0.1-0.2 Ω;
		0.22\5		μΗ\μF	内部值
输入滤波器元件值 $(C_1 \setminus L_n \setminus C_2)$ 动态特征		0.22\5		μπ\μΓ	以助阻
开启瞬态					
		25			2#.#b V 1 000/
开启时间	100	35	250	ms	满载, Vout=90% nom.
启动禁止时间	180	200	250	ms	
上电禁止时间		2		ms	
输出电压过冲		0		%	最大输出电容
隔离特征		,	,		
隔离电压 (加强绝缘)					见最大工作极限参数
隔离电阻		30		MΩ	在500 Vdc测试,per EN 50155
隔离电容 (输入到输出)		1000		pF	见注 1
功率降额曲线温度限制					
半导体结温			125	°C	売温额定 150 ℃
PCB板温度			125	°C	UL 额定最大工作温度 130 ℃
变压器温度			125	°C	
最大基板温度 Tb			100	°C	
功能特征					
开关频率		350		kHz	隔离级开关频率相同
开/关控制					
断态电压	2.4		8	V	
导通电压	-2.0		0.8	V	
开/关控制					应用指南图A和B
上拉电压		5		V	
上拉电阻		10		kΩ	
过温关断 OTP 调节点		125		°C	平均PCB板温度
过温关断重启滞后		10		∘€	1 - 41 - 62 //X min/X
可靠性特征		10			
计算的 MTBF (MIL-217) MIL-HDBK-217F		3.90		106 Hrc	Tb = 70°C
计算的 MTBF (MIL-217) MIL-HDBK-217F		3.50			Tb = 70 °C
现场展示的 MTBF		3.30		10° Hrs.	
%物液外的 MIDF	I	I	I	1 10. UIS.	I


注1: 可以在模块外部增加更高值的隔离电容。

REV 1.0 Р2


技术图表


通用图 1: 典型启动波形,输入电压提前接入,通道 2 为 ON/OFF 引脚电压。

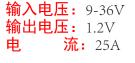
通用图 2: 所有输出电压下调阻值曲线

通用图 3: 1.2V 到 3.3V 输出电压上调阻值曲线

通用图 4: 5V 到 15V 输出电压上调阻值曲线

Y-IQ18012SGx25 电气特征 **(1.2 Vout)** 除非另有说明,否则Ta=25℃,气流速率=300 LFM,Vin=18Vdc;全工作温度范围为-40℃至+100℃基板温度,并具有适当的功率降额。部分参数的更改 不再另作通知。

参数	Min.	Тур.	Max.	Units	备注及条件
输入特征		7.			
最大输入电流			6.0	А	Vin min; 调节; 限流
空载输入电流		165	210	mA	
静态输入电流		10	14	mA	
输入瞬态响应		0.04		V	见图6
输入端纹波电流		175		mA	RMS
推荐的输入保险丝			20	Α	推荐使用快熔保险丝,见注2
输出特征					
输出电压设置点	1.188	1.200	1.212	V	
输出电压调整					
全输入范围		±0.1	±0.3	%	
全负载范围		±0.1	±0.3	%	
全温度范围	-18		18	mV	
总输出电压范围	1.170		1.230	V	全样品、全输入、全负载、全温度范围及全生命周期
输出电压纹波和噪音					带宽20 MHz; 见注 1
峰峰值		35	70	mV	满载
RMS		9	20	mV	满载
工作输出电流范围	0		25	Α	取决于热降额
输出DC限流保护动作点	27.5	30.0	32.5	A	输出电压低 10%
输出反灌保护电流关断点		1.3		A	从输出中获得负电流
反灌保护恢复电流		2		mA	从输出中获得负电流
最大输出电容			10,000	μF	满载标称Vout (电阻负载)
负载电流瞬态时输出电压					
电压变化值 (0.1 A/μs)		90		mV	50% to 75% to 50% Iout max
恢复时间		200		μs	To within 1% Vout nom
输出电压调节范围	-10		10	%	通过引脚 8 & 4; 通用图 3-5
输出电压远端补偿范围			10	%	通过引脚 8 & 4
输出过压保护	1.4	1.6	1.8	V	超过全温度范围
效率					
100%负载		75		%	效率曲线见图1
50%负载		74		%	效率曲线见图1


注1: 输出端滤波电容为 1 μF 陶瓷电容和 15 μF 低ESR钽电容。对于要求降低输出电压纹波和噪声的应用,请咨询YOTTA。

注2: 安全认证要求使用额定值等于或低于该值的保险丝。

REV 1.0 Р4

技术图表

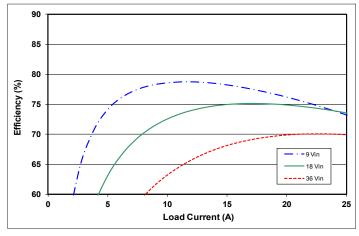


图1: 在25°C,最小、标称、最大输入电压时,标称输出电压相对负载电流的效率

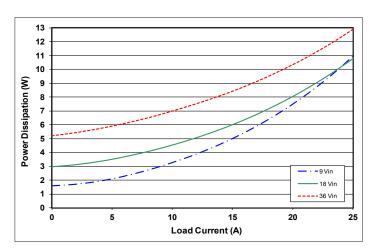


图2: 在25°C,最小、标称、最大输入电压时,标称输出电压相对负载电流的功率消耗

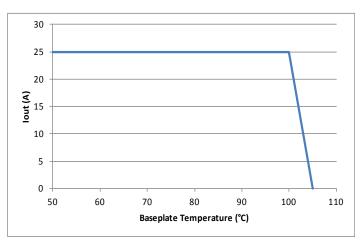


图3:最大负载电流相对基板温度 (在传导冷却时)。注:系统设计时必须提供合适的散热路径以保持基板温度低于100°C

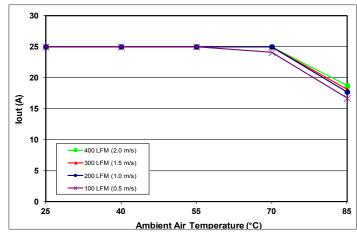


图4:全密封转换器 (1/4"散热器)最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从引脚3到引脚1穿过转换器(标称输入电压)

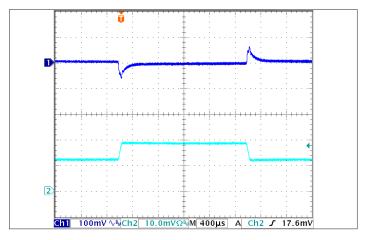


图5: 输出电压响应负载电流阶跃变化(50%-75%-50% of Iout(max); dI / dt = 0.1 A / μ s)。 负载电容: 100μ F 电解电容和 1μ F 陶瓷电容。通道1:Vout,通道2:Iout

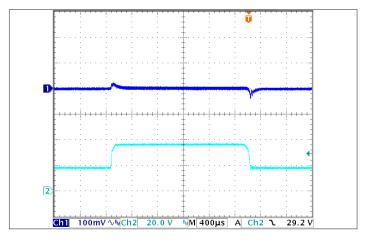


图6:输出电压响应输入电压阶跃变化 (标称到最大输入电压) 负载电容: 100µF 电解输出电容。通道1: Vout,通道2: Vin

Y-IQ18015SGx25 电气特征 **(1.5 Vout)** 除非另有说明,否则Ta=25℃,气流速率=300 LFM,Vin=18Vdc;全工作温度范围为-40℃至+100℃基板温度,并具有适当的功率降额。部分参数的更改 不再另作通知。

参数	Min.	Тур.	Max.	Units	备注及条件
输入特征					
最大输入电流			7.3	Α	Vin min; 调节; 限流
空载输入电流		200	250	mA	
静态输入电流		10	14	mA	
输入瞬态响应		0.04		V	见图6
输入端纹波电流		175		mA	RMS
推荐的输入保险丝			20	Α	推荐使用快熔保险丝,见注2
输出特征					
输出电压设置点	1.485	1.500	1.515	V	
输出电压调整					
全输入范围		±0.1	±0.3	%	
全负载范围		±0.1	±0.3	%	
全温度范围	-23		23	mV	
总输出电压范围	1.462		1.538	V	全样品、全输入、全负载、全温度范围及全生命周期
输出电压纹波和噪音					带宽20 MHz; 见注 1
峰峰值		30	60	mV	满载
RMS		5	10	mV	满载
工作输出电流范围	0		25	A	取决于热降额
输出DC限流保护动作点	27.5	30.0	32.5	A	输出电压低 10%
输出反灌保护电流关断点		1.5		A	从输出中获得负电流
反灌保护恢复电流		2		mA	从输出中获得负电流
最大输出电容			10,000	μF	满载标称Vout (电阻负载)
负载电流瞬态时输出电压					
电压变化值 (0.1 A/μs)		75		mV	50% to 75% to 50% Iout max
恢复时间		80		μs	To within 1% Vout nom
输出电压调节范围	-10		10	%	通过引脚 8 & 4; 通用图 3-5
输出电压远端补偿范围			10	%	通过引脚 8 & 4
输出过压保护	1.7	1.9	2.1	V	超过全温度范围
效率					
100%负载		77		%	效率曲线见图1
50%负载		76		%	效率曲线见图1

注1: 输出端滤波电容为 1 μF 陶瓷电容和 15 μF 低ESR钽电容。对于要求降低输出电压纹波和噪声的应用,请咨询YOTTA。

注2: 安全认证要求使用额定值等于或低于该值的保险丝。

REV 1.0 Р6

技术图表

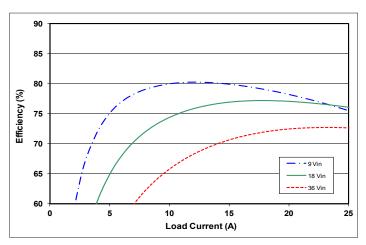


图1: 在25°C,最小、标称、最大输入电压时,标称输出电压相对负载电流的效率

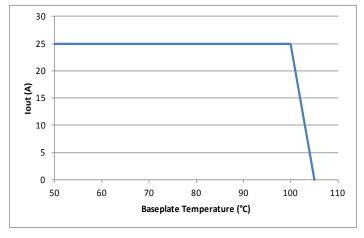


图3:最大负载电流相对基板温度(在传导冷却时)。注:系统设计时必须提供合适的散热路径以保持基板温度低于100°C

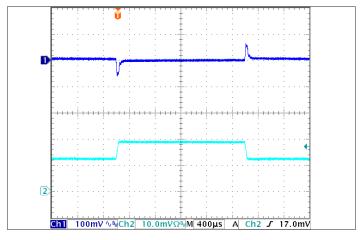


图5: 输出电压响应负载电流阶跃变化 (50%-75%-50% of Iout(max); dI / dt = 0.1 A / μ s) 。 负载电容: 100μ F 电解电容和 1μ F 陶瓷电容。 通道1: Vout,通道2: Iout

输入电压: 9-36V 输出电压: 1.5V 电 流: 25A

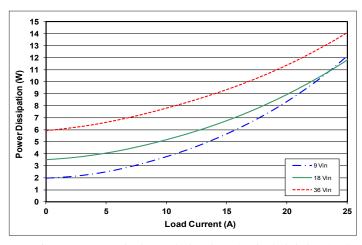


图2: 在25°C,最小、标称、最大输入电压时,标称输出电压相对负载电流的功率消耗

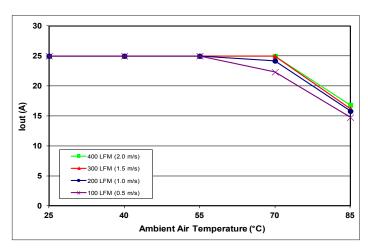


图4:全密封转换器 (1/4"散热器)最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从引脚3到引脚1穿过转换器(标称输入电压)

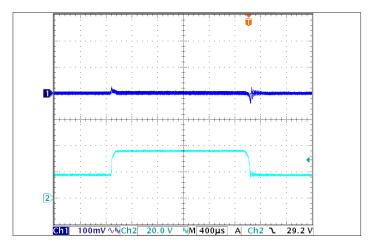


图6:输出电压响应输入电压阶跃变化 (标称到最大输入电压) 负载电容: 100µF 电解输出电容。通道1: Vout,通道2: Vin

REV 1.0

Y-IQ18018SGx25 电气特征 **(1.8 Vout)** 除非另有说明,否则Ta=25℃,气流速率=300 LFM,Vin=18Vdc;全工作温度范围为-40℃至+100℃基板温度,并具有适当的功率降额。部分参数的更改 不再另作通知。

参数	Min.	Тур.	Max.	Units	备注及条件
输入特征		7.			
最大输入电流			8.6	Α	Vin min; 调节; 限流
空载输入电流		225	280	mA	
静态输入电流		10	14	mA	
输入瞬态响应		0.04		V	见图6
输入端纹波电流		220		mA	RMS
推荐的输入保险丝			20	Α	推荐使用快熔保险丝,见注2
输出特征					
输出电压设置点	1.782	1.800	1.818	V	
输出电压调整					
全输入范围		±0.1	±0.3	%	
全负载范围		±0.1	±0.3	%	
全温度范围	-27		27	mV	
总输出电压范围	1.755		1.845	V	全样品、全输入、全负载、全温度范围及全生命周期
输出电压纹波和噪音					带宽20 MHz; 见注 1
峰峰值		35	70	mV	满载
RMS		8	20	mV	满载
工作输出电流范围	0		25	A	取决于热降额
输出DC限流保护动作点	27.5	30.0	32.5	A	输出电压低 10%
输出反灌保护电流关断点		1.8		Α	从输出中获得负电流
反灌保护恢复电流		2		mA	从输出中获得负电流
最大输出电容			10,000	μF	满载标称Vout (电阻负载)
负载电流瞬态时输出电压					
电压变化值 (0.1 A/μs)		75		mV	50% to 75% to 50% Iout max
恢复时间		100		μs	To within 1% Vout nom
输出电压调节范围	-10		10	%	通过引脚 8 & 4; 通用图 3-5
输出电压远端补偿范围			10	%	通过引脚 8 & 4
输出过压保护	2.1	2.3	2.5	V	超过全温度范围
效率					
100%负载		79		%	效率曲线见图1
50%负载		78		%	效率曲线见图1

注1: 输出端滤波电容为 1 μF 陶瓷电容和 15 μF 低ESR钽电容。对于要求降低输出电压纹波和噪声的应用,请咨询YOTTA。

注2: 安全认证要求使用额定值等于或低于该值的保险丝。

REV 1.0 Р8

技术图表

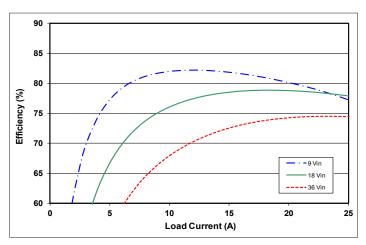


图1: 在25°C,最小、标称、最大输入电压时,标称输出电压相对负载电流的效率

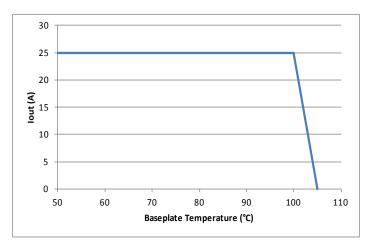


图3:最大负载电流相对基板温度(在传导冷却时)。注:系统设计时必须提供合适的散热路径以保持基板温度低于100°C

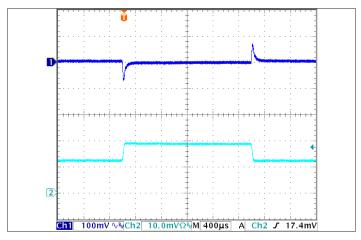


图5: 输出电压响应负载电流阶跃变化 (50%-75%-50% of Iout(max); dI / dt = 0.1 A / μ s) 。 负载电容: 100μ F 电解电容和 1μ F 陶瓷电容。 通道1: Vout,通道2: Iout

输入电压: 9-36V 输出电压: 1.8V 电 流: 25A

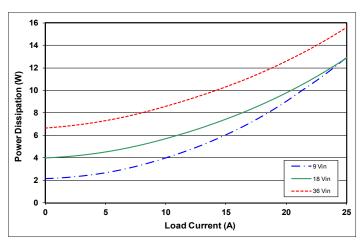


图2: 在25°C,最小、标称、最大输入电压时,标称输出电压相对负载电流的功率消耗

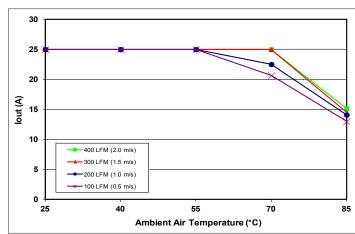


图4:全密封转换器 (1/4"散热器)最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从引脚3到引脚1穿过转换器 (标称输入电压)

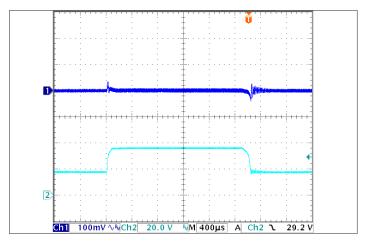


图6:输出电压响应输入电压阶跃变化(标称到最大输入电压) 负载电容:100µF 电解输出电容。通道1: Vout,通道2: Vin

REV 1.0

Y-IQ18025SGx20 电气特征 **(2.5 Vout)** 除非另有说明,否则Ta=25℃,气流速率=300 LFM,Vin=18Vdc;全工作温度范围为-40℃至+100℃基板温度,并具有适当的功率降额。部分参数的更改 不再另作通知。

参数	Min.	Тур.	Max.	Units	备注及条件
输入特征					
最大输入电流			9.6	А	Vin min; 调节; 限流
空载输入电流		220	280	mA	
静态输入电流		10	14	mA	
输入瞬态响应		0.06		V	见图6
输入端纹波电流		280		mA	RMS
推荐的输入保险丝			20	Α	推荐使用快熔保险丝,见注2
输出特征					
输出电压设置点	2.475	2.500	2.525	V	
输出电压调整					
全输入范围		±0.1	±0.3	%	
全负载范围		±0.1	±0.3	%	
全温度范围	-38		38	mV	
总输出电压范围	2.437		2.563	V	全样品、全输入、全负载、全温度范围及全生命周期
输出电压纹波和噪音					带宽20 MHz; 见注 1
峰峰值		35	70	mV	满载
RMS		8	20	mV	满载
工作输出电流范围	0		20	A	取决于热降额
输出DC限流保护动作点	22.0	24.0	26.0	A	输出电压低 10%
输出反灌保护电流关断点		2.8		A	从输出中获得负电流
反灌保护恢复电流		2		mA	从输出中获得负电流
最大输出电容			10,000	μF	满载标称Vout (电阻负载)
负载电流瞬态时输出电压					
电压变化值 (0.1 A/μs)		100		mV	50% to 75% to 50% Iout max
恢复时间		100		μs	To within 1% Vout nom
输出电压调节范围	-10		10	%	通过引脚 8 & 4; 通用图 3-5
输出电压远端补偿范围			10	%	通过引脚 8 & 4
输出过压保护	2.8	3.1	3.3	V	超过全温度范围
效率					
100%负载		77		%	效率曲线见图1
50%负载		78		%	效率曲线见图1

注1: 输出端滤波电容为 1 μF 陶瓷电容和 15 μF 低ESR钽电容。对于要求降低输出电压纹波和噪声的应用,请咨询YOTTA。

注2: 安全认证要求使用额定值等于或低于该值的保险丝。

技术图表

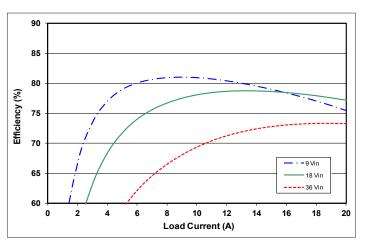


图1: 在25°C,最小、标称、最大输入电压时,标称输出电压相对负载电流的效率

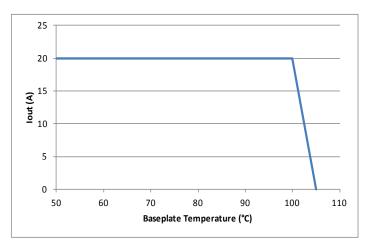


图3:最大负载电流相对基板温度(在传导冷却时)。注:系统设计时必须提供合适的散热路径以保持基板温度低于100°C

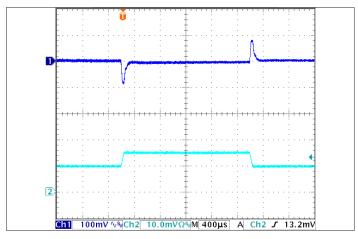


图5: 输出电压响应负载电流阶跃变化 (50%-75%-50% of Iout(max); dI/dt=0.1 A / μ s) 。 负载电容: 100μ F 电解电容和 1μ F 陶瓷电容。 通道1: Vout, 通道2: Iout

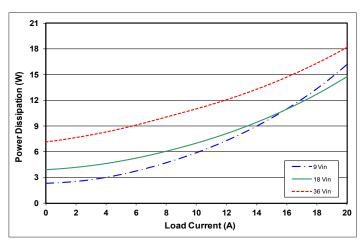


图2: 在25°C,最小、标称、最大输入电压时,标称输出电压相对负载电流的功率消耗

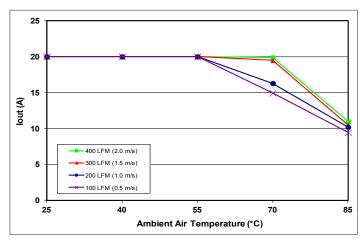


图4:全密封转换器 (1/4"散热器)最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从引脚3到引脚1穿过转换器(标称输入电压)

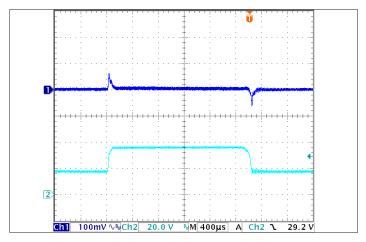


图6:输出电压响应输入电压阶跃变化 (标称到最大输入电压) 负载电容: 100µF 电解输出电容。通道1: Vout,通道2: Vin

Y-IQ18033SGx15 电气特征 **(3.3 Vout)** 除非另有说明,否则Ta=25℃,气流速率=300 LFM,Vin=18Vdc;全工作温度范围为-40℃至+100℃基板温度,并具有适当的功率降额。部分参数的更改 不再另作通知。

参数	Min.	Тур.	Max.	Units	备注及条件
输入特征					
最大输入电流			9.4	A	Vin min; 调节; 限流
空载输入电流		200	250	mA	
静态输入电流		10	14	mA	
输入瞬态响应		0.05		V	见图6
输入端纹波电流		240		mA	RMS
推荐的输入保险丝			20	Α	推荐使用快熔保险丝,见注2
输出特征					
输出电压设置点	3.267	3.300	3.333	V	
输出电压调整					
全输入范围		±0.1	±0.3	%	
全负载范围		±0.1	±0.3	%	
全温度范围	-50		50	mV	
总输出电压范围	3.217		3.383	V	全样品、全输入、全负载、全温度范围及全生命周期
输出电压纹波和噪音					带宽20 MHz; 见注 1
峰峰值		25	50	mV	满载
RMS		5	10	mV	满载
工作输出电流范围	0		15	Α	取决于热降额
输出DC限流保护动作点	16.5	18.0	19.5	A	输出电压低 10%
输出反灌保护电流关断点		3.3		Α	从输出中获得负电流
反灌保护恢复电流		2		mA	从输出中获得负电流
最大输出电容			10,000	μF	满载标称Vout (电阻负载)
负载电流瞬态时输出电压					
电压变化值 (0.1 A/μs)		175		mV	50% to 75% to 50% Iout max
恢复时间		80		μs	To within 1% Vout nom
输出电压调节范围	-10		10	%	通过引脚 8 & 4; 通用图 3-5
输出电压远端补偿范围			10	%	通过引脚 8 & 4
输出过压保护	3.9	4.1	4.6	V	超过全温度范围
效率					
100%负载		80		%	效率曲线见图1
50%负载		79		%	效率曲线见图1

注1: 输出端滤波电容为 1 μF 陶瓷电容和 15 μF 低ESR钽电容。对于要求降低输出电压纹波和噪声的应用,请咨询YOTTA。

注2: 安全认证要求使用额定值等于或低于该值的保险丝。

技术图表

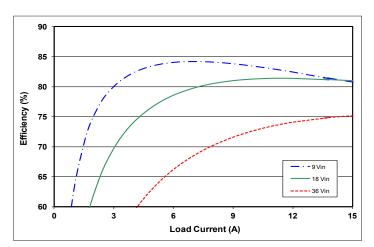


图1: 在25°C,最小、标称、最大输入电压时,标称输出电压相对负载电流的效率

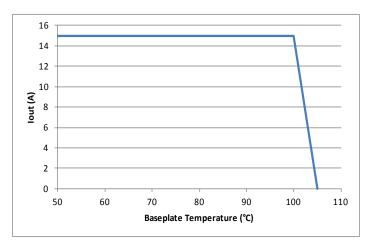


图3:最大负载电流相对基板温度(在传导冷却时)。注:系统设计时必须提供合适的散热路径以保持基板温度低于100°C

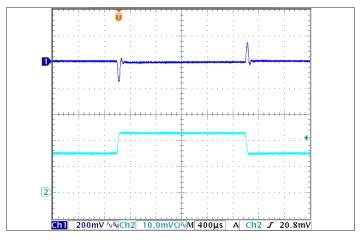


图5: 输出电压响应负载电流阶跃变化 (50%-75%-50% of Iout(max); dI/dt=0.1 A / μ s) 。 负载电容: 100μ F 电解电容和 1μ F 陶瓷电容。 通道1: Vout,通道2: Iout

输入电压: 9-36V 输出电压: 3.3V 电 流: 15A

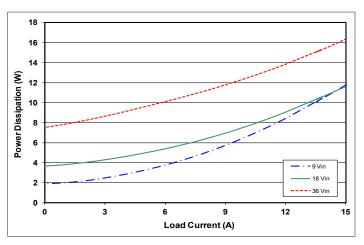


图2: 在**25°C**,最小、标称、最大输入电压时,标称输出电压相对负载电流的功率消耗

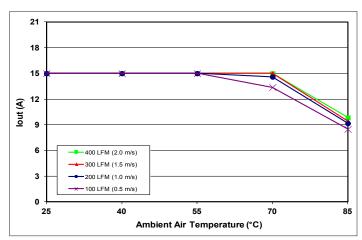


图4:全密封转换器 (1/4"散热器)最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从引脚3到引脚1穿过转换器(标称输入电压)

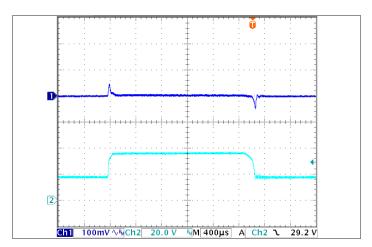


图6: 输出电压响应输入电压阶跃变化 (标称到最大输入电压) 负载电容: 100µF 电解输出电容。通道1: Vout, 通道2: Vin

Y-IQ18050SGx10 电气特征 **(5.0 Vout)** 除非另有说明,否则Ta=25°C,气流速率=300 LFM,Vin=18Vdc;全工作温度范围为-40°C至+100°C基板温度,并具有适当的功率降额。部分参数的更改 不再另作通知。

个冉另作迪知。					
参数	Min.	Тур.	Max.	Units	备注及条件
输入特征					
最大输入电流			9.3	Α	Vin min; 调节; 限流
空载输入电流		175	220	mA	
静态输入电流		10	14	mA	
输入瞬态响应		0.07		V	见图6
输入端纹波电流		250		mA	RMS
推荐的输入保险丝			20	A	推荐使用快熔保险丝,见注2
输出特征					
输出电压设置点	4.950	5.000	5.050	V	
输出电压调整					
全输入范围		±0.1	±0.3	%	
全负载范围		±0.1	±0.3	%	
全温度范围	-75		75	mV	
总输出电压范围	4.875		5.125	V	全样品、全输入、全负载、全温度范围及全生命周期
输出电压纹波和噪音					带宽20 MHz;见注1
峰峰值		25	50	mV	满载
RMS		5	10	mV	满载
工作输出电流范围	0		10	Α	取决于热降额
输出DC限流保护动作点	11.5	12.5	13.5	Α	输出电压低 10%
输出反灌保护电流关断点		3.0		Α	从输出中获得负电流
反灌保护恢复电流		2		mA	从输出中获得负电流
最大输出电容			5,000	μF	满载标称Vout (电阻负载)
负载电流瞬态时输出电压					
电压变化值 (0.1 A/μs)		275		mV	50% to 75% to 50% Iout max
恢复时间		100		μs	To within 1% Vout nom
输出电压调节范围	-10		10	%	通过引脚 8 & 4; 通用图 3-5
输出电压远端补偿范围			10	%	通过引脚 8 & 4
输出过压保护	5.8	6.2	6.6	V	超过全温度范围
效率					
100%负载		80		%	效率曲线见图1
50%负载		81		%	效率曲线见图1

注1: 输出端滤波电容为 1 μF 陶瓷电容和 15 μF 低ESR钽电容。对于要求降低输出电压纹波和噪声的应用,请咨询YOTTA。

注2: 安全认证要求使用额定值等于或低于该值的保险丝。

技术图表

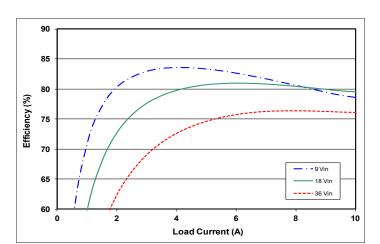


图1: 在25°C,最小、标称、最大输入电压时,标称输出电压相对负载电流的效率

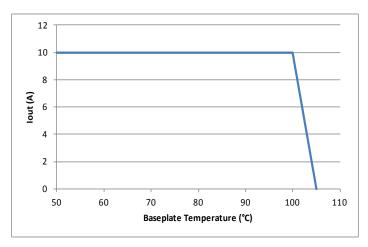


图3:最大负载电流相对基板温度(在传导冷却时)。注:系统设计时必须提供合适的散热路径以保持基板温度低于100°C

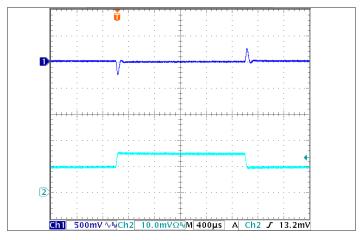


图5: 输出电压响应负载电流阶跃变化 (50%-75%-50% of Iout(max); dI / dt = 0.1 A / μ s) 。 负载电容: 100μ F 电解电容和 1μ F 陶瓷电容。 通道1: Vout,通道2: Iout

输入电压: 9-36V **输出电压:** 5.0V 电 **流:** 10A

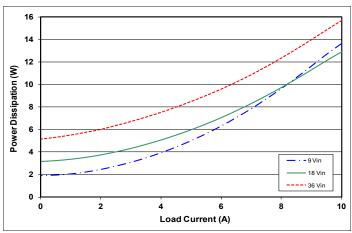


图2: 在25°C,最小、标称、最大输入电压时,标称输出电压相对负载电流的功率消耗

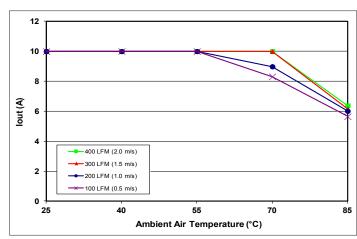


图4:全密封转换器 (1/4"散热器)最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从引脚3到引脚1穿过转换器(标称输入电压)

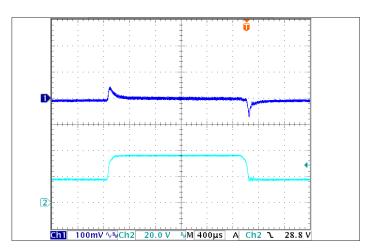


图6: 输出电压响应输入电压阶跃变化 (标称到最大输入电压) 负载电容: 100µF 电解输出电容。通道1: Vout,通道2: Vin

不再另作通知。

参数	Min.	Тур.	Max.	Units	备注及条件
输入特征					
最大输入电流			8.8	Α	Vin min; 调节; 限流
空载输入电流		180	230	mA	
静态输入电流		10	14	mA	
输入瞬态响应		0.05		V	见图6
输入端纹波电流		250		mA	RMS
推荐的输入保险丝			20	A	推荐使用快熔保险丝,见注2
输出特征					
输出电压设置点	6.930	7.000	7.070	V	
输出电压调整					
全输入范围		±0.1	±0.3	%	
全负载范围		±0.1	±0.3	%	
全温度范围	-105		105	mV	
总输出电压范围	6.825		7.175	V	全样品、全输入、全负载、全温度范围及全生命周期
输出电压纹波和噪音					带宽20 MHz; 见注 1
峰峰值		25	50	mV	满载
RMS		5	10	mV	满载
工作输出电流范围	0		7	Α	取决于热降额
输出DC限流保护动作点	7.7	8.3	9.1	A	输出电压低 10%
输出反灌保护电流关断点		2.5		Α	从输出中获得负电流
反灌保护恢复电流		2		mA	从输出中获得负电流
最大输出电容			4,000	μF	满载标称Vout (电阻负载)
负载电流瞬态时输出电压					
电压变化值 (0.1 A/μs)		250		mV	50% to 75% to 50% Iout max
恢复时间		100		μs	To within 1% Vout nom
输出电压调节范围	-10		10	%	通过引脚 8 & 4; 通用图 3-5
输出电压远端补偿范围			10	%	通过引脚 8 & 4
输出过压保护	8.2	8.5	8.9	V	超过全温度范围
效率					
100%负载		82		%	效率曲线见图1
50%负载		82		%	效率曲线见图1

注1: 输出端滤波电容为 1 μF 陶瓷电容和 15 μF 低ESR钽电容。对于要求降低输出电压纹波和噪声的应用,请咨询YOTTA。

注2: 安全认证要求使用额定值等于或低于该值的保险丝。

技术图表

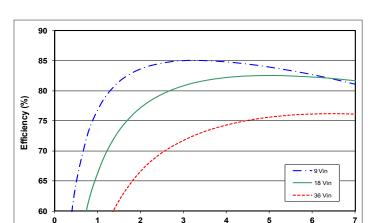


图1: 在25°C,最小、标称、最大输入电压时,标称输出电压相对负载电流的效率

Load Current (A)

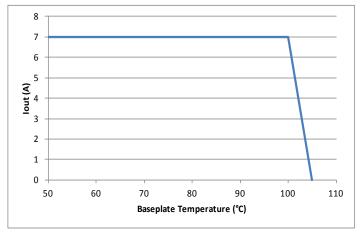


图3:最大负载电流相对基板温度(在传导冷却时)。注:系统设计时必须提供合适的散热路径以保持基板温度低于100°C

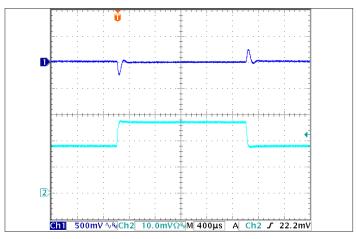
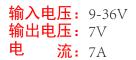



图5: 输出电压响应负载电流阶跃变化 (50%-75%-50% of Iout(max); dI/dt=0.1 A / μ s) 。 负载电容: 100μ F 电解电容和 1μ F 陶瓷电容。 通道1: Vout, 通道2: Iout

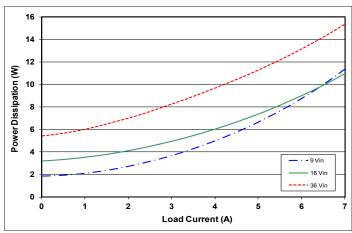


图2: 在25°C,最小、标称、最大输入电压时,标称输出电压相对负载电流的功率消耗

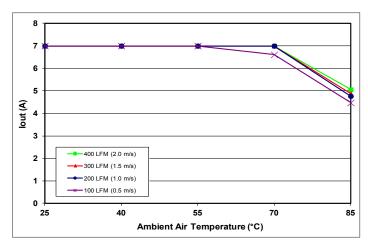


图4:全密封转换器 (1/4"散热器)最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从引脚3到引脚1穿过转换器(标称输入电压)

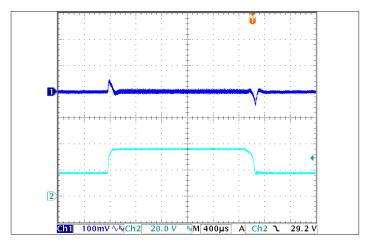


图6: 输出电压响应输入电压阶跃变化 (标称到最大输入电压) 负载电容: 100µF 电解输出电容。通道1: Vout,通道2: Vin

Y-IQ18120SGx04 电气特征 **(12.0 Vout)** 除非另有说明,否则Ta=25°C,气流速率=300 LFM,Vin=18Vdc;全工作温度范围为-40°C至+100°C基板温度,并具有适当的功率降额。部分参数的更改 不再另作通知。

参数	Min.	Тур.	Max.	Units	备注及条件
输入特征					
最大输入电流			9.3	Α	Vin min; 调节; 限流
空载输入电流		250	310	mA	
静态输入电流		10	14	mA	
输入瞬态响应		0.15		V	见图6
输入端纹波电流		250		mA	RMS
推荐的输入保险丝			20	Α	推荐使用快熔保险丝,见注2
输出特征					
输出电压设置点	11.88	12.00	12.12	V	
输出电压调整					
全输入范围		±0.1	±0.3	%	
全负载范围		±0.1	±0.3	%	
全温度范围	-180		180	mV	
总输出电压范围	11.70		12.30	V	全样品、全输入、全负载、全温度范围及全生命周期
输出电压纹波和噪音					带宽20 MHz; 见注 1
峰峰值	0	40	80	mV	满载
RMS		8	20	mV	满载
工作输出电流范围	0		4	Α	取决于热降额
输出DC限流保护动作点	4.5	5.0	5.5	A	输出电压低 10%
输出反灌保护电流关断点		2.5		A	从输出中获得负电流
反灌保护恢复电流		2		mA	从输出中获得负电流
最大输出电容			1,500	μF	满载标称Vout (电阻负载)
负载电流瞬态时输出电压					
电压变化值 (0.1 A/μs)		250		mV	50% to 75% to 50% Iout max
恢复时间		100		μs	To within 1% Vout nom
输出电压调节范围	-10		10	%	通过引脚 8 & 4; 通用图 3-5
输出电压远端补偿范围			10	%	通过引脚 8 & 4
输出过压保护	15.0	15.5	16.0	V	超过全温度范围
效率					
100%负载		79		%	效率曲线见图1
50%负载		77		%	效率曲线见图1

注1:输出端滤波电容为1μF 陶瓷电容和15μF 低ESR钽电容。对于要求降低输出电压纹波和噪声的应用,请咨询YOTTA。

注2: 安全认证要求使用额定值等于或低于该值的保险丝。

技术图表

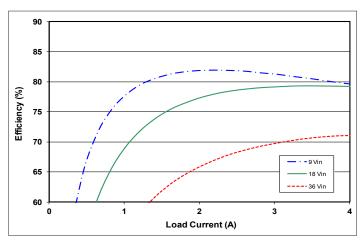


图1: 在25°C,最小、标称、最大输入电压时,标称输出电压相对负载电流的效率

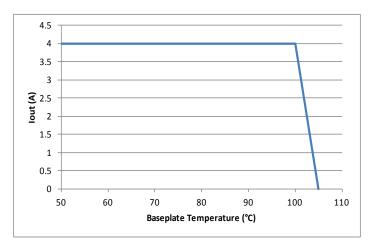


图3:最大负载电流相对基板温度(在传导冷却时)。注:系统设计时必须提供合适的散热路径以保持基板温度低于100°C

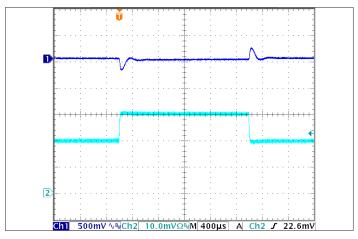


图5: 输出电压响应负载电流阶跃变化 (50%-75%-50% of Iout(max); dI/dt=0.1 A / μ s) 。 负载电容: 100μ F 电解电容和 1μ F 陶瓷电容。 通道1: Vout, 通道2: Iout

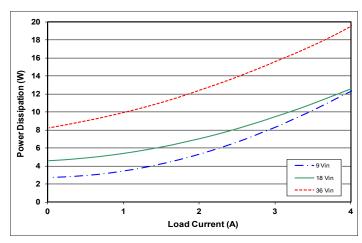


图2: 在25°C,最小、标称、最大输入电压时,标称输出电压相对负载电流的功率消耗

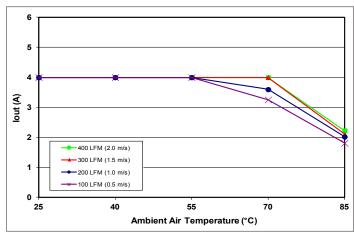


图4:全密封转换器 (1/4"散热器)最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从引脚3到引脚1穿过转换器(标称输入电压)



图6:输出电压响应输入电压阶跃变化 (标称到最大输入电压) 负载电容: 100µF 电解输出电容。通道1: Vout,通道2: Vin

Y-IQ18150SGx03 电气特征 **(15.0 Vout)** 除非另有说明,否则Ta=25℃,气流速率=300 LFM,Vin=18Vdc;全工作温度范围为-40℃至+100℃基板温度,并具有适当的功率降额。部分参数的更改 不再另作通知。

参数	Min.	Тур.	Max.	Units	备注及条件
输入特征					
最大输入电流			8.4	А	Vin min; 调节; 限流
空载输入电流		350	440	mA	
静态输入电流		10	14	mA	
输入瞬态响应		0.08		V	见图6
输入端纹波电流		250		mA	RMS
推荐的输入保险丝			20	Α	推荐使用快熔保险丝,见注2
输出特征					
输出电压设置点	14.85	15.00	15.15	V	
输出电压调整					
全输入范围		±0.1	±0.3	%	
全负载范围		±0.1	±0.3	%	
全温度范围	-225		225	mV	
总输出电压范围	14.62		15.38	V	全样品、全输入、全负载、全温度范围及全生命周期
输出电压纹波和噪音					带宽20 MHz; 见注 1
峰峰值		75	150	mV	满载
RMS		15	30	mV	满载
工作输出电流范围	0		3	A	取决于热降额
输出DC限流保护动作点	4.3	4.8	5.3	A	输出电压低 10%
输出反灌保护电流关断点		3		A	从输出中获得负电流
反灌保护恢复电流		2		mA	从输出中获得负电流
最大输出电容			1,500	μF	满载标称Vout (电阻负载)
负载电流瞬态时输出电压					
电压变化值 (0.1 A/μs)		175		mV	50% to 75% to 50% Iout max
恢复时间		250		μs	To within 1% Vout nom
输出电压调节范围	-10		10	%	通过引脚 8 & 4; 通用图 3-5
输出电压远端补偿范围			10	%	通过引脚 8 & 4
输出过压保护	17.5	19.0	20.0	V	超过全温度范围
效率					
100%负载		80		%	效率曲线见图1
50%负载		74		%	效率曲线见图1

注1:输出端滤波电容为1μF 陶瓷电容和15μF 低ESR钽电容。对于要求降低输出电压纹波和噪声的应用,请咨询YOTTA。

注2: 安全认证要求使用额定值等于或低于该值的保险丝。

技术图表

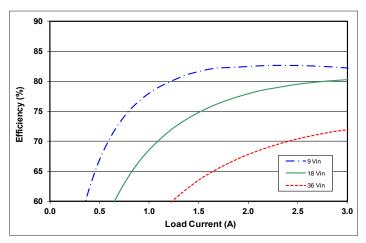


图1: 在25°C,最小、标称、最大输入电压时,标称输出电压相对负载电流的效率

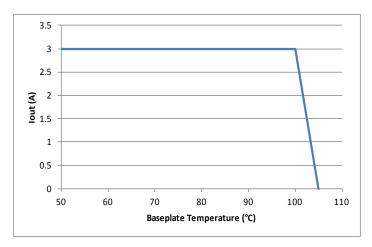


图3:最大负载电流相对基板温度(在传导冷却时)。注:系统设计时必须提供合适的散热路径以保持基板温度低于100°C

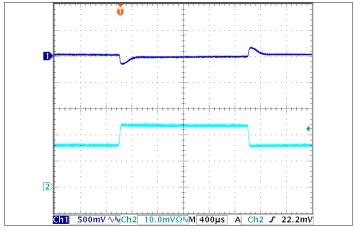


图5: 输出电压响应负载电流阶跃变化 (50%-75%-50% of Iout(max); dI / dt = 0.1 A / μ s) 。 负载电容: 100μ F 电解电容和 1μ F 陶瓷电容。 通道1: Vout,通道2: Iout

输入电压: 9-36V 输出电压: 15V 电 流: 3A

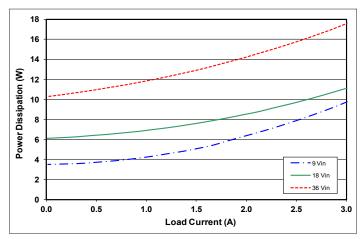


图2: 在25°C,最小、标称、最大输入电压时,标称输出电压相对负载电流的功率消耗

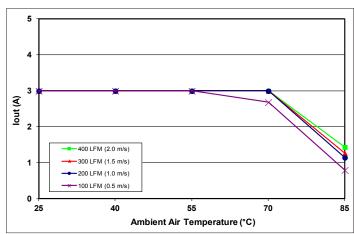


图4:全密封转换器 (1/4"散热器)最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从引脚3到引脚1穿过转换器 (标称输入电压)

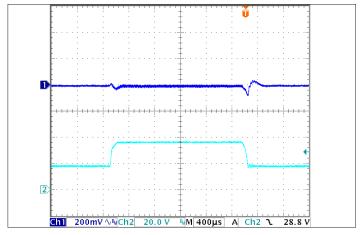


图6: 输出电压响应输入电压阶跃变化 (标称到最大输入电压) 负载电容: 100µF 电解输出电容。通道1: Vout, 通道2: Vin

基本功能介绍

此模块采用两级拓扑架构,第一级采用非隔离 Buck 电路,为第二级隔离变换提供一个稳定的输入电压,以实现高效率 DC/DC 转换,两级固定开关频率方便 EMI 处理。关于模块的基本性能及控制功能如下:

- · ON/OFF 使能:通过模块的 ON/OFF 引脚 (Pin2) 可以控制模块的使能和关断,此管脚,参考原边输入地 Vin-,低电平有效,即 ON/OFF 下拉至 Vin- 时模块使能输出。
- · 远端电压调节 Remote Sense+/-: 用于补偿模块输出侧到负载端的线路压降,采用此功能时将 Sense+ (Pin7) 和 Sense- (Pin5) 分别在负载端与供电电源的正负端连接,最高补偿电压不应 超过额定输出的 10%,以免触发过压保护。如不用远端补偿功能需将这两个管脚在模块输出侧分别与 Vout+和 Vout- 就近连接,悬空对模块输出调整率有一定影响。
- · 输出电压调整 Trim (Pin 6):通过 Trim 管脚可以在典型输出电压的基础上对输出电压进行调整,需注意调整电压范围不能超过数据表中规定的最大值。如需下调输出电压应在 Trim (Pin 6)和 Sense-(Pin 5)之间增加一个电阻,该电阻阻值计算公式如下:

Rtrim-down =
$$\left(\begin{array}{cc} 511 \\ \Delta\% \end{array}\right)$$
 -10.22 [k Ω]

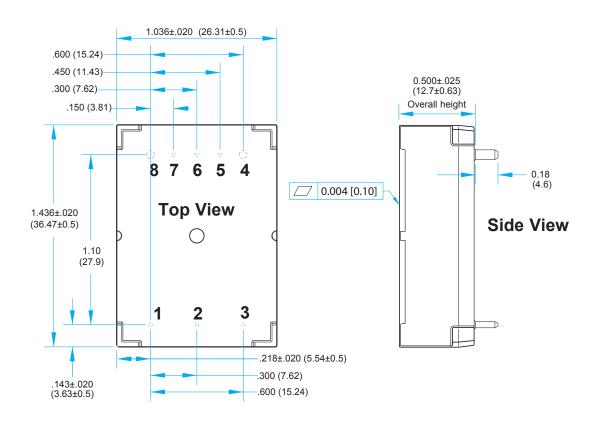
其中

$$\Delta = \left| \begin{array}{c|c} \hline V_{nominal} - V_{desired} \\ \hline V_{nominal} \end{array} \right| \hspace{0.1cm} \times 100\%$$

如需上调输出电压,则应在 Trim (Pin 6) 和 Sense+ (Pin 7) 之间增加一个电阻,电阻阻值计算公式如下:

$${\rm Rtrim\text{-}up} \ = \ \left(\ \frac{5.11 {\rm Vout} \ {\rm X} \ (100 + \Delta \, \%)}{1.225 \, \Delta \, \%} \ - \ \frac{511}{\Delta \, \%} \ - 10.22 \ \right) \ [k\Omega]$$

其中: Vout= 额定输出电压 Δ 同上


注:通过 Trim 调整输出电压不会影响模块对输出过压保护点,输出电压上调过压容易触发输出过压保护。另外不必在 Trim 和 Sense+/-管脚之间加外部电容,模块内部已做抗干扰处理。1.2V 输出模块在计算上拉电阻时系数 1.225 要换成 0.6。

保护功能

- · 输入欠压保护: 当输入电压过低(见数据表欠压保护门限)时,此模块会关断输出。只有在输入电压上升至数据表中给出的启动门限值及以上时模块才重新恢复正常输出。
- · 输出限流保护: 当输出电流超过模块输出限流门限值时模块会降低输出电压以保持继续供电能力, 但当输出电压降低至数据表所给出输出限流关断电压阀值及以下时, 模块会关断输出。 在持续过流(或短路)状况下模块会以 5Hz 的频率进入"打嗝"模式不断尝试重启, 直至过流(或短路)状况去掉后才能恢复正常输出。
- · 输出过压保护: 当模块输出端电压超过输出过压保护门限值时(见数据表),模块会立即关闭输出以便有效的保护模块避免过压损坏。输出关闭 200ms 后模块会自动重启。
- · 过温保护:模块内部有温度传感器监测 PCB 平均温度,当内部温度超过设定的过温保护点时会立即关闭输出,当温度降低一定值时(见数据表过温保护迟滞温度值)模块会重新启动恢复正常输出。

标准封装机械图

注:

- 1) 表面的基板平整度公差为 0.01" (0.25mm) TIR
- 2) 引脚 1-3, 5-7 直径为 0.040" (1.02mm) 支座肩部直径为 0.080" (2.03mm)
- 3) 引脚 4 和 8 直径为 0.062" (1.57 mm) 支座肩部直径为 0.100" (2.54mm)
- 4) 所有引脚: 材料 铜合金 表面处理 - 镀镍锡
- 5) 未标尺寸的器件仅为视觉展示
- 6) 重量: 1.1 oz (31 g)
- 7) 所有尺寸都为英寸(毫米)

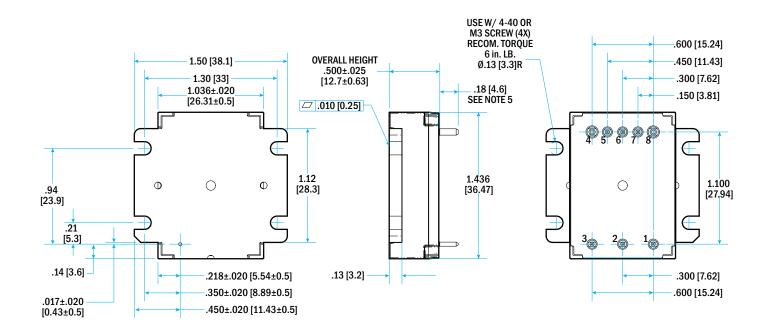
公差: x.xx +/-0.02 in. (x.x +/-0.5mm)

x.xxx + /-0.010 in. (x.xx + /-0.25mm)

8) 工艺: 满足或超过 IPC-A-610C Class II

9) 推荐引脚长度比 PCB 厚度大 0.03" (0.76mm)

引脚分配


引脚	标签	名称	功能
1	+VIN	Vin(+)	正输入电压
2	ON/OFF	ON/OFF TTL 输入来打开及关断转换器参考 Vin(-) 带内部拉升	
3	-VIN	Vin(–) 负输入电压	
4	-VOUT	Vout(–) 负输出电压	
5	-SNS	SENSE(-)	负远端补偿(见注1)
6	TRIM	TRIM	输出电压调节(见注2)
7	+SNS	SENSE(+)	正远端补偿(见注3)
8	+VOUT	Vout(+)	正输出电压

注:

- 1) SENSE(-) 应该在负载端或模块引脚处就近连接至 Vout(-)
- 2) 保持 TRIM 引脚开路以获得标称输出电压
- 3) SENSE(+) 应该在负载端或模块引脚处就近连接至 Vout(+)

法兰盘封装机械图

注:

- 1) 每个螺丝的施加扭矩不应超过 6in-lb (0.7 Nm)
- 2) 表面的基板平整度公差为 0.01" (0.25mm) TIR
- 3) 引脚 1-3, 5-7 直径为 0.040" (1.02mm) 支座肩部直径为 0.080" (2.03mm)
- 4) 引脚 4 和 8 直径为 0.062" (1.57 mm) 支座肩部直径为 0.100" (2.54mm)
- 5) 所有引脚:材料-铜合金 表面处理-镀镍锡
- 6) 未标尺寸的器件仅为视觉展示
- 7) 重量: 1.22 oz (34.6 g) 8) 所有尺寸都为英寸(毫米)

公差: x.xx +/-0.02 in. (x.x +/-0.5mm)

x.xxx +/-0.010 in. (x.xx +/-0.25mm)

9) 工艺:满足或超过 IPC-A-610C Class II

引脚分配

210112			
引脚	标签	名称	功能
1	+VIN	Vin(+)	正输入电压
2	ON/OFF	ON/OFF	TTL 输入来打开及关断转换器, 参考 Vin(-) 带内部拉升
3	-VIN	Vin(–)	负输入电压
4	-VOUT	Vout(–)	负输出电压
5	-SNS	SENSE(-)	负远端补偿(见注1)
6	TRIM	TRIM	输出电压调节(见注2)
7	+SNS	SENSE(+)	正远端补偿(见注3)
8	+VOUT	Vout(+)	正输出电压

注:

- 1) SENSE(-) 应该在负载端或模块引脚处就近连接至 Vout(-)
- 2) 保持 TRIM 引脚开路以获得标称输出电压
- 3) SENSE(+) 应该在负载端或模块引脚处就近连接至 Vout(+)

符合标准

参数	备注及条件
符合标准	
UL 60950-1	加强绝缘
CAN/CSA C22.2 No. 60950-1	
EN 60950-1	

注:必须始终使用外部输入保险丝以满足这些安全要求。

认证测试

参数	# Units	测试条件
认证测试		
寿命测试	32	95% rated Vin and load, units at derating point, 1000 hours
震动	5	10-55 Hz sweep, 0.060 " total excursion, 1 min./sweep, 120 sweeps for 3 axis
机械冲击	5	100 g minimum, 2 drops in x, y, and z axis
温度循环	10	-40 °C to 100 °C, unit temp. ramp 15 °C/min., 500 cycles
功率/热循环	5	Toperating = min to max, Vin = min to max, full load, 100 cycles
设计裕量	5	Tmin-10 °C to Tmax+10 °C, 5 °C steps, Vin = min to max, 0-105% load
湿热、循环	5	85 °C, 95% RH, 1000 hours, continuous Vin applied except 5 min/day
可焊性	15 pin	MIL-STD-883, method 2003
高度	2	70,000 feet (21 km), see Note

注: 高海拔应用通常需要传导冷却设计, 因为在稀薄的大气中自然对流冷却效果较差。

型号命名系统

YOTTA DC DC转换器产品命名系统遵循以下格式

订购信息

下表显示了此产品系列中转换器的有效型号和订购选项。 订购时,请确保使用完整的产品型号。

在型号中添加"-G"以符合6/6 ROHS要求。

型号	输入电压	输出电压	最大输出电流
Y-IQ18012SGw25xyz-G	9-36 V	1.2 V	25 A
Y-IQ18015SGw25xyz-G	9-36 V	1.5 V	25 A
Y-IQ18018SGw25xyz-G	9-36 V	1.8 V	25 A
Y-IQ18025SGw20xyz-G	9-36 V	2.5 V	20 A
Y-IQ18033SGw15xyz-G	9-36 V	3.3 V	15 A
Y-IQ18050SGw10xyz-G	9-36 V	5 V	10 A
Y-IQ18070SGw07xyz-G	9-36 V	7 V	7 A
Y-IQ18120SGw04xyz-G	9-36 V	12 V	4 A
Y-IQ18150SGw03xyz-G	9-36 V	15 V	3 A

在上面列出的型号中,必须包括以下选项来代替WXYZ空格。 并非所有组合都提供有效型号,请与YOTTA联系确认。

热设计	使能逻辑	引脚类型	功能集
w	X	y	Z
C - 密封 V - 密封带法兰盘	N - 负	R - 0.180"	S - 标准